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Abstract 
Selective pressures on DNA sequences often result in departures from neutral evolution that can be captured by the McDonald–Kreitman (MK) 
test. However, the nature of such selective forces often remains unknown to experimentalists. Amino acid fixations driven by natural selection in 
protein-coding genes are commonly associated with a genetic arms race or changing biological purposes, leading to proteins with new function-
ality. Here, we evaluate the expectations of population genetic patterns under a buffering mechanism driving selective amino acids to fixation, 
which is motivated by an observed phenotypic rescue of otherwise deleterious nonsynonymous substitutions at bag of marbles (bam) and Sex 
lethal (Sxl) in Drosophila melanogaster. These two genes were shown to experience strong episodic bursts of natural selection potentially due 
to infections of the endosymbiotic bacteria Wolbachia observed among multiple Drosophila species. Using simulations to implement and eval-
uate the evolutionary dynamics of a Wolbachia buffering model, we demonstrate that selectively fixed amino acid replacements will occur, but 
that the proportion of adaptive amino acid fixations and the statistical power of the MK test to detect the departure from an equilibrium neutral 
model are both significantly lower than seen for an arms race/change-in-function model that favors proteins with diversified amino acids. We 
find that the observed selection pattern at bam in a natural population of D. melanogaster is more consistent with an arms race model than with 
the buffering model.
Keywords: population genetics, symbiosis, models/simulations, adaptation, coevolution, molecular evolution

Introduction
Patterns of DNA sequence variation within and between spe-
cies have been widely used to infer the evolutionary forces 
that have acted on genes and genomes. Over the past three 
decades, many statistical tests of a model of neutral evolution 
have been developed, with one of the most widely applied 
being the McDonald–Kreitman (MK) test (McDonald & 
Kreitman, 1991). The basis of this test is a comparison of 
the ratios of nonsynonymous and synonymous fixed differ-
ences between species to those segregating as polymorphisms 
within species using a 2  ×  2 contingency test (e.g., Fisher’s 
exact test). Synonymous variation is a proxy for neutral vari-
ation, and an excess of nonsynonymous fixed differences 
between species is typically interpreted as evidence that nat-
ural selection has accelerated the fixation of advantageous 
amino acid replacements. This pattern is often associated with 
natural selection fine-tuning protein function, in response to a 
changing function and/or an intra- or intergenomic arms race 
(e.g., adaptations by a genome to silence transposable ele-
ments and reciprocal adaptations between predator and prey, 
respectively) (McLaughlin & Malik, 2017). Although the MK 
test has been found to have low power in detecting positive 
selection, particularly when applied to single genes (Akashi, 

1999; Zhai et al., 2009), there are many empirical reports in 
the literature of significant departures in the direction of pos-
itive selection (e.g., Eyre-Walker, 2006). The obvious question 
from the experimentalist’s perspective is what evolutionary 
mechanisms are driving such signatures of positive selection.

We have studied the population genetics of two Drosophila 
germline stem cell genes, bag of marbles (bam) and Sex lethal 
(Sxl), that show strong evidence of episodic positive selection 
in several species (Bauer DuMont et al., 2007, 2021; Flores, 
DuMont, et al., 2015). This positive selection has been pro-
posed to be due to a change in gene function and/or an evolu-
tionary arms race with the endosymbiont bacteria Wolbachia 
that genetically interacts with both genes and resides in the 
germarium where they function (Bauer DuMont et al., 2007, 
2021; Bubnell et al., 2021; Flores, Bubnell, et al., 2015; Flores, 
DuMont, et al., 2015).

Wolbachia infections have been observed to be tem-
porally dynamic in host populations, being lost at times 
and then regained (Meany et al., 2019; Richardson et al., 
2012; Turelli et al., 2018). We thus evaluate an alternative 
model based on standard population genetic theory and the 
observed rescue of fertility defects of four distinct amino acid 
replacement mutations of bam and Sxl in Drosophila mela-
nogaster (Flores, Bubnell, et al., 2015; Starr & Cline, 2002). 
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The Wolbachia rescue results suggest that during Wolbachia 
infection, slightly deleterious amino acid replacements might 
accumulate by drift in these (and potentially other) genes 
without significantly reducing D. melanogaster fitness. When 
Wolbachia is lost from the population, there could be positive 
selection for new nonsynonymous mutations that return the 
bam and Sxl protein sequences to their initial, and assumed 
optimal, functional state. We term this dynamic the Buffering 
model, as the effects of deleterious mutations are “buffered” 
during periods of infection by Wolbachia.

We implemented simulations to compare the evolutionary 
processes of our Buffering model with those from a classical 
arms race between the host germline gene and Wolbachia. For 
example, Wolbachia may manipulate bam and Sxl in a way 
counterproductive to the fitness of the fly. Arms race dynam-
ics are expected to lead to positive selection favoring diversi-
fying amino acids in these genes that result in Drosophila’s 
escape from the deleterious impact of Wolbachia on their fit-
ness. Note that while we model this as an evolutionary arms 
race, the results of selection associated with a strong direc-
tional shift in function and thus amino acid sequence would 
be similar in many ways.

We base our modeling on the bam gene alone because 
Sxl has a large and highly conserved RNA binding domain 
that limits the sites available for adaptive evolution in our 
simulations (Bauer DuMont et al., 2021). We demonstrate 
that the buffering type of interaction does result in positive 
selection when we track the number of adaptive mutations 
that fix in the population during the simulations. However, 
application of the MK test to the resultant numbers of syn-
onymous and nonsynonymous fixations and polymorphisms 
among sequences sampled at the end of the simulations 
detects only weak departures from neutrality that would 
indicate positive selection. We also find that it is difficult to 
distinguish between the buffering or arms race models based 
on properties of the amino acid substitutions observed, 
though an arms race model does lead to more adaptive fix-
ations overtime.

Materials and methods
Simulation model
The evolution of bam was simulated under a Wright–Fisher 
model using nucleotide-based simulation in SLiM 3.5 (Haller 
et al., 2019). We first inferred the ancestral DNA sequence of 
the exons in bam (1,338 nucleotides) for D. melanogaster and 
D. simulans using maximum likelihood with codeML v4.8 
(Yang, 2007). Briefly, alignments of seven Drosophila coding 
sequences were made using PRANK v.170427 (Löytynoja, 
2014), including sequences of D. melanogaster, D. simu-
lans, D. sechellia, D. yakuba, D. erecta, D. eugracilis, and D. 
pseudoobscura. The alignment was input in codeML, and an 
ancestral sequence was estimated by maximum likelihood for 
the common ancestor of D. melanogaster and D. simulans, 
using the other species’ sequences as outgroup references. The 
estimated common ancestral nucleotide sequence was then 
used in SLiM as the starting sequence for the entire popu-
lation in each simulation. This sequence is the “ancestral 
sequence” that is referred to in the remainder of the article. 
We simulated bam as a single contiguous exon, though in 
reality there are two short introns (61 and 64 bp). The effect 
of excluding these introns has a negligible impact on the rate 
of recombination.

The evolutionary parameters in the simulations were based 
on empirical estimates. In particular, we used an effective 
population size (N

e) of 1 × 106 (Campos et al., 2017), an over-
all mutation probability (µ) of 2.8 × 10−9 per nucleotide per 
generation, with a 2:1 transition:transversion rate (Keightley 
et al., 2009, 2014), an average recombination rate (ρ) of 
1 × 10−8 per nucleotide per generation (Comeron et al., 2012), 
and a divergence time t of 25 million generations (2.5 million 
years assuming 10 generations per year) from the common 
ancestor to each species (Russo et al., 1995). To make the sim-
ulations run efficiently, we scaled down time and population 
size by a factor of 1,000 while keeping key parameter prod-
ucts constant to approximate the same evolutionary process 
(Haller & Messer, 2019) (summarized in Table 1).

We observed 85% of the codons in bam encode the same 
amino acids in both D. melanogaster and D. simulans refer-
ence sequences, likely due to functional constraints (example 
classifications are shown in Supplementary Table S1). Thus, 
we used this metric as a baseline in our initial simulations and 
first randomly sampled 75% of the codons from the identical 
amino acids in the ancestral sequence to be constrained to 
the original amino acids. The rest of the identical amino acids 
(10% of the total amino acids) were assumed to be under 
completely neutral evolution, while the other 15% unidenti-
cal amino acids were subject to selection based on the setup 
of our models. (Note that we explore the 75:15 ratio of con-
served to selected amino acids later in this article.) A non-
synonymous mutation in the conserved codons was always 
assigned a selection coefficient s = −0.1, so that it would 
undergo strong purifying selection (N

es = −100 in our simula-
tions). A mutation in the neutral codons was always assigned 
a selection coefficient s = 0.

Each simulation run began with a “neutral burn-in” period 
of 20,000 simulation generations (=20 × scaled Ne) to accumu-
late genetic variation consistent with an equilibrium state of 
mutation-drift balance before non-neutral dynamics started. 
During this period, mutations occurring at the conserved 
sites were still assigned a selection coefficient of s = −0.1 to 
retain the functionally constrained amino acid positions. At 
the end of the neutral burn-in period, all new variations (fix-
ations and polymorphisms) were retained in the simulation. 
This quantity of fixations was checked against the expected 
number of fixations estimated from population genetic theory 
based on the given Ne, µ, and the number of (nonconserved) 
sites in the gene (Supplementary File 1). Selection coefficients 
of subsequent new mutations were based on a comparison to 
the original, inferred ancestral sequence.

Selection regimes
For both the Buffering and Arms Race models, we alter-
nated selection on a protein-coding gene with and without 
Wolbachia infection. The phases of infection and absence of 

Table 1. Empirical (biological) estimates for evolutionary parameters and 
scaled estimates used for simulation.

Parameter Ne ρ µ t 

Empirical estimate 1 × 106 1 × 10-8 2.8 × 10-9 2.5 × 107

Scaled estimate (simulation) 1 × 103 1 × 10-5 2.8 × 10-6 2.5 × 104

Note. Ne = effective population size; ρ = recombination rate; µ = mutation 
rate; t = time in unit of generation.
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Wolbachia alternated in each model, which simulated the 
periodic occurrence of Wolbachia in natural populations. To 
keep the simulations simple, we assume that Wolbachia infec-
tion and loss are instantaneous throughout the entire popu-
lation and that there are no other effects of Wolbachia on the 
host beyond which we are modeling.

For each selection phase of the simulations, the absolute 
value of selection coefficient |s| for each positively or nega-
tively selected mutation in the 15% of codon sites under 
selection was fixed for the duration of each simulation. The 
beneficial mutations were assigned a selection coefficient of s 
> 0, while deleterious mutations had a selection coefficient s < 
0. To determine the fitness effect of each mutation, we use the 
amino acid matrix of Miyata et al. (1979).

The Miyata et al. (1979) amino acid matrix captures the 
primary features of biochemical and physical differences 
between amino acid pairs. We henceforth refer to the pairwise 
measures from the Miyata matrix as “Miyata scores (MS)” 
and use them to determine whether a mutation is neutral 
(including all synonymous mutations) or under positive or 
negative selection (nonsynonymous mutations) in each selec-
tion scenario. We use a shorthand for Miyata score calcula-
tions as follows, with, for example, MS between the current 
amino acid (AAcur) and the mutated amino acid (AAmut) repre-
sented as MS(AAcur, AAmut). MS ranges from 0 to 5.13, where 
0 indicates identical amino acids, for example, MS(L,L) = 0, 
and 5.13 indicates the most physicochemically different 
amino acids, for example, MS(W,G) = 5.13.

Using MS, we assigned selection coefficients to new muta-
tions in simulated periods of Wolbachia infection and absence 
for each model as outlined in Figure 1. Importantly, the Arms 
Race model shifts the optimal amino acid sequence to promote 
amino acid diversification to contrast it with the Buffering 
model, which promotes retention of a sequence similar to the 
ancestral optimal sequence. Thus, the Arms Race model has a 
moving sequence optimum, whereas the Buffering model has 
a stationary optimum.

The models outlined in Figure 1 are the simplest with regard 
to assigning selection coefficients and thus are regarded as 

the “Base” models. For instance, in the Arms Race model, 
any nonsynonymous mutation would be positively selected 
during the presence of Wolbachia. This allows substitutions 
to be dominated by amino acids of any type, including those 
of “small steps” as suggested by Bergman and Eyre-Walker 
(2019) to be prevalent in Drosophila.

In order to evaluate the robustness of our simulation 
results to the choice of amino acid substitution matrix, 
we also carried out simulations with selection coefficients 
based on the BLOSUM62 amino acid matrix (Henikoff & 
Henikoff, 1992), which is based on amino acid conserva-
tion among protein sequences (relative to random similarity) 
from diverse taxa with a pairwise identity of no more than 
62% (Supplementary Materials and Methods). This measure 
differs fundamentally from the Miyata et al. (1979) matrix, 
which considers only the biochemical properties of the amino 
acids themselves.

Simulation parameters
We focused on investigating the impacts of two key parame-
ters on the evolution of the Drosophila species in each of the 
proposed models: (a) the magnitude of the selection coeffi-
cient for both beneficial and deleterious mutations and (b) 
the length of alternating Wolbachia-infection and Wolbachia-
absence phases in each model, in which the different selec-
tion phases occur. The absolute values of selection coefficients 
included |s| = 0.1, |s| = 0.01, and |s| = 0.001, resulting in Ne|s| 
= 100, Ne|s| = 10, and Ne|s| = 1 respectively, where Ne|s| = 
1 can be considered effectively neutral. The lengths of dif-
ferent selection phases varied from equal periods of 12,500, 
6,250, and 3,125 simulation generations (corresponding to 
12.5 million, 6.25 million, and 3.125 million generations in 
unscaled time). For each set of parameter combinations, we 
ran 50 independent simulations and performed downstream 
analyses every 3,125 simulation generations after the neu-
tral burn-in period, by comparing the resultant population 
sequences in SLiM to the common ancestral sequence of D. 
melanogaster and D. simulans.

Figure 1. Simulation setup for Buffering and Arms Race Base models. Selection on new nonsynonymous mutations (mutated amino acid, AAmut) is 
determined by their Miyata score (MS) to the appropriate reference amino acid (the current amino acid, AAcur, or the ancestral amino acid, AAanc).
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Analyses of simulated sequences
One hundred diploid individuals were randomly sampled from 
the population at the end of each simulation, and the numbers 
of nonsynonymous and synonymous fixations (relative to the 
inferred ancestral sequence) and polymorphisms present were 
tabulated. The MK test was used to evaluate departures from 
an equilibrium neutral model of molecular evolution and was 
customized from the iMKT package (Murga-Moreno et al., 
2019). The Fay et al. (2001) correction (FWW correction) for 
low-frequency polymorphisms was applied, counting only 
polymorphisms >5% frequency to avoid including deleterious 
variation segregating in the populations, and significance was 
determined by a Fisher’s exact test.

We inferred α, which is the proportion of nonsynony-
mous substitutions driven to fixation by positive selection, 
in two ways. First, we estimated α from sequences sampled 
at relevant time points in the simulation following Smith 
and Eyre-Walker (2002) 

Ä
α = 1− DsPn

DnPs

ä
, where Ds and Dn 

are the number of fixed synonymous and nonsynonymous 
substitutions and Ps and Pn are the number of polymor-
phisms in the sample that are synonymous and nonsyn-
onymous. We refer to this sample-derived statistic as the 
“estimated α” throughout this article, and this is the only 
type of estimate of α that can be obtained by experimental-
ists for samples of sequences from populations. Note that 
the premise underlying the Buffing model allows selection 
for any amino acid that is more similar to the ancestral 
state than the current state. This can include substitutions 
that are identical to the ancestral amino acid (back substi-
tutions) and those that are not. Through the simulations, 
we test if there are enough nonidentical substitutions that 
occur to allow MK results that reject neutrality in the direc-
tion of positive selection.

For comparison, we also calculated the “true α” in the sim-
ulations by tracking the actual proportion of all nonsynon-
ymous substitutions in bam that were driven to fixation by 
positive selection in the simulation. Thus true α =  (number 
of nonsynonymous mutations that fix and have s > 0)/(all 
nonsynonymous substitutions). Since the selection coefficient 
of a mutation could have changed as Wolbachia was gained 
and lost from the population, any mutation that once had a 
selection coefficient s > 0 and was eventually fixed in the pop-
ulation was regarded as being driven to fixation by positive 
selection. As with the estimated α, the true α is calculated for 
each simulation from the observed substitutions relative to 
the ancestral sequence.

Lastly, the average MS calculated for each amino acid 
change between the simulated, evolved sequence and the 
ancestral sequence was used as an assessment of physico-
chemical similarity between the two sequences.

Results
Buffering model
We first simulated the Buffering Base model based on the 
Drosophila bam gene, together with the cyclic pattern of 
Wolbachia infection and loss in the Drosophila population. 
We had predicted that slightly deleterious nonsynonymous 
mutations would be functionally buffered by the presence of 
Wolbachia such that these mutations become effectively neu-
tral and could drift to fixation. However, when Wolbachia 
is lost, new mutations that brought the bam protein closer 
to the ancestral functional state would be positively selected, 

while any mutation that pushed the bam protein further away 
from the ancestry would be selected against.

Simulations demonstrated this prediction to be true: Some 
nonsynonymous substitutions were driven to fixation by pos-
itive selection as measured by “true α” in the first Wolbachia-
absence phase (Figure 2, row 1). This pattern was most evident 
with the strongest selection, as the true α increased and stayed 
constant in the phases where positive selection was expected, 
with only a marginal decrease during the phases of neutral 
evolution. Weaker selection led to a smaller increase in the 
true α. Notably, longer Wolbachia infection periods resulted 
in larger true α’s, presumably due to the longer time to accu-
mulate buffered deleterious fixations by drift in the presence 
of Wolbachia.

Despite the pattern for true α, estimated α’s from the 
observed numbers of nonsynonymous and synonymous fix-
ations and polymorphisms in the samples of sequences from 
the simulations were largely negative across the whole simu-
lation in the Buffering Base model regardless of the selection 
coefficients (Figure 2, row 2). Negative estimated α’s indicate 
a violation of MK test assumptions and are, here, a result of 
high Pn and low Dn. In the initial Wolbachia-infection phase, 
nonsynonymous polymorphisms were negatively selected in 
the constrained codons and neutrally buffered by Wolbachia 
in the codons under selection, with few such mutations in the 
latter category going to fixation (Figure 2, row 4). Following 
this “buffering” period, a subset of nonsynonymous muta-
tions was selected for. However, the number of nonsynon-
ymous mutations that could be positively selected in the 
Buffering Base model was limited, leading to a smaller Dn and 
thus a smaller (possibly <0) estimated α, even when positive 
selection was present as evidenced by the true α. Overall, esti-
mated α decreased during neutral phases (Wolbachia present 
and thus a phase of genetic drift) but increased in phases with 
selection (Wolbachia absent and thus selection to return bam 
to a more functional state).

The boxplots of differences between the true and estimated 
α’s illustrated that estimated α’s systematically underestimate 
the true α’s. This is due to the presence of deleterious poly-
morphisms (Eyre-Walker & Keightley, 2009; Fay et al., 2001; 
Messer & Petrov, 2013), which is what we observe here with 
the median of the boxplots distributed around and some-
times above 0 (especially with Ne|s|>1 in the later Wolbachia-
infection phases). For the four MK test parameters, the final 
magnitude of Dn, Ds, Pn, and Ps observed at the end of the sim-
ulations were slightly impacted by the length of Wolbachia 
infection and absence periods, but only Pn showed dramatic 
periodic fluctuations due to the cyclic infection and absence 
periods (Figure 2, row 4).

Additionally, we looked at the distributions of p-values 
from the MK test (FWW correction, SNPs frequency > 5%) 
and the correlation between them and the estimated α’s at the 
end of the simulation. We find that even under the strongest 
selection in our simulations, the MK test could hardly detect 
any statistically significant signals of positive selection in the 
Buffering Base model, likely due in part to the modest length 
of the bam gene (Figure 4A). Overall, smaller p-values were 
associated with larger estimated α’s, and all the significant 
p-values (p<0.05) were associated with estimated α’s close to 
1.0 across all selection coefficients (data not shown).

All together, these results demonstrate that a modest num-
ber of amino acid fixations can occur due to selection for an 
optimal ancestral allele after a period of buffered mutations 
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accumulate. The estimated α did not, however, reliably iden-
tify departures from neutrality in the direction of positive 
selection in the Buffering Base model.

To further explore the Buffering model and its potential to 
generate signals of positive selection, we also ran additional 
simulations with different MS cutoffs informing the selection 
schemes (Supplementary Materials and Methods). Here, we 
introduced neutral and deleterious ranges to allow for a more 
nuanced selection scheme and termed the new model as the 
Buffering Complex model (Supplementary Figure S1). The 
Buffering Complex models had lower true α’s compared to 
Base models (Supplementary Figure S2, row 1), with a barely 
perceptible increase in true α when Wolbachia is lost from the 
population, even in the strongest selection scenario of Ne|s| = 
100. The patterns of estimated α’s and boxplots for the differ-
ence between the true and estimated α’s were similar between 
Complex and Base models (Supplementary Figure S2, rows 2 
and 3). Dn had a slight increase in the Buffering Complex model 
compared with the Buffering Base model, potentially due to the 
introduction of the neutral region leading to a small number 
of additional nonsynonymous fixations by genetic drift alone 
(Supplementary Figure S2, row 4). The MK test still could 
detect only a minimal number of statistically significant signals 
of positive selection in the Complex model (Supplementary 
Figure S4A), just like the case for the Base model.

These results suggest that restricting the degrees to 
which we positively select an amino acid based on their 

physicochemical change makes it harder to generate signa-
tures of positive selection for bam in the Buffering models, 
especially with a limited infection period. The signatures of 
positive selection required both fixations of deleterious muta-
tions during the infection and a significant amount of amino 
acids to be positively selected due to their ability to revert 
mutated proteins back to their optimal functions.

Arms Race model
We compare our Buffering model with that of a traditional 
arms race model between two species, which we imple-
mented with positive selection acting on nonsynonymous 
mutations in the presence of Wolbachia and purifying selec-
tion imposed on nonsynonymous mutations in the absence 
of Wolbachia. We find that the patterns of true α’s were 
clearly indicative of positive selection in the Arms Race Base 
model phase with Wolbachia (Figure 3, row 1). The ele-
vated true α’s persisted, though with a slow decline during 
the subsequent Wolbachia-free phase. Positive selection in 
the Wolbachia-infection phases increased α or kept it as a 
constant, while purifying selection in the Wolbachia-absence 
phases decreased α marginally.

The averages of estimated α’s were almost all positive for 
selection coefficients with Ne|s|>1 and showed clear periodic 
changes as Wolbachia comes in and out of the population 
across all three phase lengths (Figure 3, row 2). Surprisingly, 

Figure 2. McDonald–Kreitman test (MKT) results of simulations for Buffering Base model. Each column shows MKT analyses with different selection 
coefficients of Ne|s| = 100, Ne|s| = 10, and Ne|s| = 1 graphed across alternating phases (phase length = 12,500, 6,250, and 3,125 simulation 
generations) of Wolbachia infection (Wol+, dark gray) and Wolbachia absence (Wol−, light gray) post-burn-in period. In each column, row 1: the average 
true α in the simulations; row 2: the average estimated α (iMKT α) in the simulations (FWW correction, SNPs frequency > 5% only); row 3: the 
distributions of differences between the true and estimated α every 3,125 simulation generations; row 4: the average of each MK test component (Dn, 
Ds, Pn, Ps).
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the magnitude of the estimated α’s increased in the phase with-
out the imposed positive selection. This unexpected increase is 
explained by the change of nonsynonymous polymorphisms 
in the population. In the Wolbachia-infection phase, both 
Dn and Pn accumulated due to the positive selection of non-
synonymous mutations, as expected; however, after the sud-
den change to the Wolbachia-absence phase, Dn was largely 
unchanged, while Pn experienced a sudden decrease as segre-
gating and new nonsynonymous mutations were all selected 
against (Figure 3, row 4). Given the equation for estimating 
α from a sample of sequences 

Ä
α = 1− DsPn

DnPs

ä
, the estimated α 

therefore increased in the phase with the implemented puri-
fying selection that followed the positive selection. For the 
effectively neutral case of Ne|s| = 1, the estimated α’s in the 
Arms Race Base model fluctuated around 0.

For the Arms Race Base model with effectively neutral 
evolution (Ne|s|=1), estimated α’s usually underestimated the 
true α’s (Figure 3, row 3). However, under stronger selection 
(Ne|s|=10 or 100), estimated α’s underestimated the true α’s 
only during the Wolbachia-infection phase; there was good 
accuracy in estimated α’s estimation when Wolbachia was 
lost, which reflected the delay in detecting selection based on 
changing Pn as previously explained. The pattern of the true 
α’s and the estimated α’s was not dramatically influenced by 
the magnitude of the selection coefficient (Ne|s|=10 or 100) or 
the varying lengths of the infection/absence periods that we 
examined.

We found that a statistically significant rejection of neu-
trality in the direction of positive selection was more likely 
to be detected with the MK test in the Arms Race Base 
model than in the Buffering Base model, since the values of 
the key MK test parameter Dn are generally much larger in 
both Wolbachia-infection and Wolbachia-absence phases in 
the Arms Race model. This increased magnitude of Dn pro-
vided more statistical power in Fisher’s exact test (Figure 4B). 
Overall, smaller p-values were always associated with larger 
estimated α’s, and all the significant p-values (p < .05) were 
associated with estimated α’s close to 1.0 across all selection 
coefficients (data not shown).

As with the Buffering model, we implemented the Arms 
Race model with different MS selection-based cutoffs and 
termed it the Arms Race Complex model (Supplementary 
Materials and Methods; Supplementary Figure S1). The 
MK test results for the Arms Race Complex model closely 
resembled those for the Base model. Since we narrowed down 
the MS range for the positively selected nonsynonymous 
mutations by introducing neutral and deleterious ranges, 
we observed lower true α’s compared to the Base model 
(Supplementary Figure S3, row 1). The patterns of estimated 
α’s and boxplots for the difference between the true and esti-
mated α’s were similar between Complex and Base models 
(Supplementary Figure S3, rows 2 and 3). The total number of 
Dn did not reach the same magnitude at the end of simulation 
for the Arms Race Complex model as it did in Arms Race 

Figure 3 McDonald–Kreitman test (MKT) results of simulations for Arms Race Base model. Each column shows MKT analyses with different selection 
coefficients of Ne|s| = 100, Ne|s| = 10, and Ne|s| = 1 graphed across alternating phases (phase length = 12,500, 6,250, and 3,125 simulation 
generations) of Wolbachia infection (Wol+, dark gray) and Wolbachia absence (Wol−, light gray) post-burn-in period. In each column, row 1: the average 
true α in the simulations; row 2: the average estimated α (iMKT α) in the simulations (FWW correction, SNPs frequency > 5% only); row 3: the 
distributions of differences between the true and estimated α every 3,125 simulation generations; row 4: the average of each MK test component (Dn, 
Ds, Pn, Ps).
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Base model across different phase lengths and selection coef-
ficients (Supplementary Figure S3, row 4). However, the MK 
test still detects statistical signals of positive selection under 
the first two selection coefficients in the Complex model 
(Supplementary Figure S4B).

Distributions of MS under Buffering and Arms Race 
models
We have observed that Buffering models can result in fixation 
of amino acids due to positive selection based on true α’s, 
but the estimated α signals were harder to detect compared 
to the cases in the Arms Race models. We expect amino acid 
substitutions to be more diversified in the Arms Race model 
than in the Buffering model in both the Base and Complex 
cases, as the former is based on the premise of a sequence 
evolving away from the ancestral sequence and the latter 
is based on the premise of a sequence evolving toward the 
ancestral sequence. To assess this, we calculated MS between 
each amino acid substitution and its ancestral amino acid of 
the post-burn-in SLiM reference sequence to represent their 
physicochemical differences.

For both the Base and Complex cases, the distributions 
of MS per amino acid from the Arms Race and Buffering 
models were most distinguishable from each other in the 
strongest selection scenario at Ne|s| = 100. Here, the inter-
quartile ranges of MS distributions of the two models were 
completely separated at the end of simulations (Figure 5, row 
1; Supplementary Figure S5, row 1), but they were basically 
indistinguishable from each other throughout the simulations 
when the selection is the weakest at Ne|s| = 1 (Figure 5, row 3; 
Supplementary Figure S5, row 3).

For Ne|s| = 10 and Ne|s| = 100, the distributions of MS 
overlap more in the Base case than in the Complex case 
for both Buffering and Arms Race models (Figure 5, row 
2; Supplementary Figure S5, row 2) because the positively 
selected mutations had a higher concentration of MS between 
1 and 3 in the Complex case, which made the differences 
between MS more prominent. Different infection/absence 
phase lengths did not have a large impact on the average MS 
across the simulations.

BLOSUM62-based simulations
We complemented the above simulations with another sim-
ulation setup that assigned selection coefficients based on 
the BLOSUM62 amino acid matrix (Henikoff and Henikoff, 
1992) (Supplementary Figure S6). MK test results were largely 
consistent with the results from the MS-based Buffering and 
Arms Race Base simulations, again showing that the positive 
true α values that are produced in the Buffering model are 
not well captured by the estimated α (Supplementary Figure 

S7). The associated p-values were likewise similar to the 
Miyata-based simulations, but with one striking difference: 
The Ne|s|  =  100 BLOSUM62-based Arms Race model had 
much fewer statistically significant results (Supplementary 
Figure S8). This is due to the high number of low-frequency 
polymorphisms that accumulate in the BLOSUM62-based 
simulations that are removed with the FWW correction 
(Supplementary Figure S9).

Comparison with the empirical data
To evaluate which model in our analysis better captures bam’s 
observed patterns of sequence evolution within and between 
natural populations of Drosophila, we first performed the 
MK test on a population sample (n = 89) of D. melanogaster 
(Lack et al., 2015), using divergence to the predicted common 
ancestral sequence with D. simulans as the outgroup and a 
randomly sampled sequence as the reference sequence used 
in the estimated α. Analysis of these data rejects neutrality in 
the direction of positive selection using the MK test with a p 
= .00015 and estimated α of 0.91 (FWW correction, SNPs > 
5% only). We used the number of nonsynonymous substitu-
tions per nonsynonymous site (dN) calculated from MK test 
results as the summary statistic to tune selection parameters 
of the two simulation models. As the maximum true and esti-
mated α values were seen under one Wolbachia infection–loss 
cycle, we ran our empirically tuned simulations under this 
condition to optimize the conditions for generating positive 
selection.

While examining polymorphism levels would seem import-
ant to distinguish between Buffering and Arms Race mod-
els, these levels are very sensitive to the length of Wolbachia 
infection and absence as we have modeled it, for example, due 
to the strong purifying selection occurring in the Arms Race 
model when Wolbachia is lost. The problematic effect of this 
timing choice on Pn and Ps can be seen in Figures 2 and 3. As 
Dn is less sensitive to the sampling time points and represents 
the number of amino acid changes in bam, we chose to only 
use this parameter to evaluate how well our models fit the 
empirical data.

Applying the MK test to our empirical D. melanogaster pop-
ulation data, we found that Dn = 34 and dN = 0.033. We ini-
tially found that Arms Race models always predicted a much 
higher Dn than the empirical observation, while Buffering 
models often exhibited a much lower Dn. Such results showed 
that the initially assumed ratio of codons under selection of 
15% and ratio of codons under constraints of 75% could 
not reproduce similar results for the evolution of amino acids 
in either model. Thus, we chose to tune these two ratios of 
selected and constrained codons (RS and RC, respectively) 
under different strengths of positive selection (Ne|s| = 100, 

Figure 4. Distributions of McDonald–Kreitman (MK) test p-values for Base models. MK test p-values (FWW correction, SNPs frequency > 5% only) 
for simulation runs with Wolbachia phase = 12,500 simulation generations and Ne|s| = 100, 10, and 1 for the simulated models at 45,000 simulation 
generation. The vertical red line denotes p-value = .05. Note that distributions are normalized to have an area of 1 under the histograms. (A) Buffering 
Base model; (B) Arms Race Base model.
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10, 1) and explore under which parameter settings could we 
fit the empirical dN. We maintained the mutation rate, popu-
lation size, and recombination rate when fitting the models to 
the empirical data because they were based on empirical esti-
mates. When we achieved a matching dN, we then compared 
the MS per amino acid change in the observed data and our 
simulation results to see whether an Arms Race or a Buffering 
model is more similar to our empirical observations.

For each selection coefficient s, we ran simulations using RS 
and RC, both sampled from a uniformly distributed grid of nine 
points ranging from 0 to 0.8, since the maximum proportion 
of conserved codons is 0.85, and assessed the resulting dN. For 
the Arms Race models, dN was consistently more than twofold 
overestimated for any proportion of selected sites greater than 
0 (e.g., RS > 0, data not shown). Therefore, we refined the Arms 
Race model grid search for RS to a uniform grid of 6 points 
from [0, 0.1], while keeping the full grid range for RC. For the 
Buffering models, we kept the full range of the RS grid as we 
did find parameters that fit the observed dN. For each pair of 
parameters, we ran 50 simulations and calculated the mean 
of dN 

Ä
dN
ä
 across the runs. We then compared the difference 

between the empirical dN and dN . The best pair of RS and RC 
was the one that led to the smallest difference between dN  and 
the empirical dN under each selection coefficient s.

For the models with selection coefficient Ne|s| = 1, all com-
binations of the two ratios reproduced similar results con-
sistent with effective neutrality (Supplementary Figure S10). 
For moderate or strong selection, the best-fit parameters are 
shown in Table 2.

Analyses of Buffering and Arms Race models best 
fitting the empirical data
To evaluate how well the Buffering and Arms Race models 
implemented with the best-fit pairs of RS and RC recapitu-
late the empirical data for D. melanogaster, we performed the 
same MK test and MS analysis for the resulting simulations. 
Positive true α’s were observed in the Buffering Base, Arms 
Race Base, and Arms Race Complex models across different 
phase lengths, indicating that positive selection was present 
under these scenarios. However, the MK test could only iden-
tify positive selection by the estimated α and statistically sig-
nificant p-values in the two Arms Race models with strong 
selection at Ne|s| = 100. Moderate selection at Ne|s| = 10 in 
the Arms Race models or any levels of selection in the two 
Buffering models was not detected by MK test p-values or 
estimated α (Figure 6; Supplementary Figure S11).

In addition, we calculated the empirical per-site MS 
between the current D. melanogaster sequences and their 

Figure 5. The distribution of Miyata scores per amino acid substitution for Base models. Miyata scores per amino acid substitution across multiple runs 
for substitutions between the consensus sequence at the end of a given simulation generation and the ancestral sequence. Data are shown for both 
the Arms Race model (dark gray) and Buffering model (light gray) at every 3,125 simulated generations post-burn-in for different phase lengths.
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predicted common ancestral sequence shared with D. sim-
ulans (Supplementary File 2) and compared it with the dis-
tributions of per-site MS simulated from the best-fitted RS 
and RC at different time points. The end of the simulations 
at 45,000 scaled generations represents the actual divergence 
time between the ancestral sequence and the extant D. melan-
ogaster and D. simulans species. At this time point, the inter-
quartile ranges of MS of the Buffering and Arms Race models 
have separated from each other, with fully nonoverlapping 
interquartile distributions in the Complex models. In all 

models, the per-site MS of D. melanogaster is located closer 
to the center of the distributions from the Buffering models 
than to the center of distributions from the Arms Race models 
(Figure 7; Supplementary Figure S12).

In summary, the best-fit Arms Race models with strong 
selection reproduced the most significant MK test p-values 
and high estimates of α like those observed in the D. melan-
ogaster sample, but the MS analysis indicated the Buffering 
models as a better fit for the evolution of the amino acids’ 
biochemical properties. It is important to note that while the 
average estimated α is close to zero for all Buffering models, 
the lower whiskers on the box plots in Figure 6A show that 
high MK test estimated α’s can, although infrequently, occur 
under the Buffering models as well.

Discussion
We have evaluated the molecular evolutionary impact of a 
Buffering model based on the observations that Wolbachia 
protects the functions of bam and Sxl from the effects of 
deleterious mutations, thereby allowing these mutations to 
accumulate during the Wolbachia infection phase by drift 
(equivalent to the relaxation of functional constraints for 
amino acid mutations). When Wolbachia is lost, the con-
straints are reimposed, and amino acids similar to bam and 
Sxl’s ancestral states are positively selected for, potentially 

Table 2. Best-fit RS and RC parameters for Ne|s| = 10 and 100 for 
Buffering and Arms Race models.

 Ne|s| RS RC 

Buffering base 10 0.6 0.1

100 0.6 0.0

Arms race base 10 0.02 0.5

100 0.02 0.6

Buffering complex 10 0.2 0.5

100 0.4 0.2

Arms race complex 10 0.08 0.6

100 0.04 0.7

Figure 6. McDonald–Kreitman (MK) test results of simulations for best-fit Base models for Drosophila melanogaster. (A, B) α Analysis of each model 
with different selection coefficients of Ne|s| = 100 and Ne|s| = 10 graphed at phase length = 12,500 simulation generations of Wolbachia infection 
(Wol+, dark gray) and Wolbachia absence (Wol−, light gray) post-burn-in period. In each row, column 1: the average true α in the simulations; column 2: 
the average estimated α (iMKT α) in the simulations (FWW correction, SNPs frequency > 5% only); column 3: the distributions of differences between 
the true and estimated α at every 3,125 simulation generations; column 4: the average of each MK test component (Dn, Ds, Pn, Ps). (C, D) Distributions 
of MK test p-values. MK test p-values (FWW correction, SNPs frequency > 5% only) for simulation runs with Wolbachia phase = 12,500 simulation 
generations and Ne|s| = 100 and 10 for the simulated models at 45,000 simulation generation. The vertical red line denotes p-value = .05. Note that 
distributions are normalized to have an area of 1 under the histograms.
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leading to a signature of positive selection in a sample of the 
resulting DNA sequences. We compared predictions of this 
model to those from an Arms Race model, which is an imple-
mentation of dynamics that may describe the interactions 
between, for example, a host and a parasite.

We used simulations to study the evolutionary process 
involved in each model and found that both models can gen-
erate positively selected amino acid fixations, as measured by 
the actual number of such fixations tracked in our simula-
tions (the “true α”). A positive true α in the Buffering models 
reveals that Wolbachia need not function as a reproductive 
parasite in arms race with a gene like bam to drive positive 
selection in the host gene.

Importantly, in all simulations, the estimated α generally 
underestimated the true α. This underestimation had a mini-
mal effect on our interpretation of evolution in the Arms Race 
models, as the true α was very large in all simulations outside 
of those with the weakest selection. On the other hand, with 
a maximum true α of ~0.25 in the Buffering models’ simu-
lations, an underestimation led to a weak or absent signal 
of positive selection detectable by the MK test, which could 
further be confounded by statistical noise. Such findings high-
light some limitations of the MK test noted by others (Akashi, 
1999; Eyre-Walker & Keightley, 2009; Fay et al., 2001; 
Messer & Petrov, 2013; Zhai et al., 2009). Even with these 
limitations, the MK test could still infer high α’s in some sim-
ulation runs under the Buffering models, representing detec-
tion of positive selection.

The Buffering models require the initial fixation by genetic 
drift of Wolbachia-buffered deleterious nonsynonymous 
mutations for there to be resulting positive selection during 
a subsequent phase without Wolbachia. This effect is seen 
across the three different infection lengths that we simulated 
in the Buffering Base model. Longer Wolbachia infection 
phases increase the chance of detecting positive selection in 
a subsequent Wolbachia absence phase, though never to the 
level resulting from Arms Race models. The average length of 
Wolbachia infection time is unknown for Drosophila, but two 
independent studies found the wMel Wolbachia variant to 

have been in D. melanogaster for at least 79,000 and 80,000 
Drosophila generations (Choi & Aquadro, 2014; Richardson 
et al., 2012). These time periods are shorter than what we 
have simulated, but there is evidence to suggest turnover of 
Wolbachia variants that could act as a longer standing infec-
tion period than currently documented (Kriesner et al., 2013; 
Riegler et al., 2005). Thus, Wolbachia infection of the length 
we have simulated, and with it a potential for subsequent pos-
itive selection, is not out of the question.

To better evaluate the fit of the observed data from D. mela-
nogaster to the predictions of the Buffering and Arms Race 
models, we tuned the simulation selection parameters of both 
models to fit the observed nonsynonymous sequence diver-
gence per nonsynonymous site (dN) between D. melanogaster 
and the inferred common ancestor with D. simulans. Only 
the tuned Arms Race model recapitulated the statistically sig-
nificant positive estimated α’s that we observed for the D. 
melanogaster population. As in the general buffering results 
discussed above, the tuned Buffering model resulted in evi-
dence of positive selection as indicated by a true α under cer-
tain conditions, but we could rarely detect it with the MK test 
in bam with statistical significance. For the MS analysis, we 
found that the Buffering models better fit our empirical data, 
as the Arms Race models predict greater amino acid diversity 
than we observe. We expect that a restriction of the positively 
selected amino acids in the Arms Race model to only those 
physicochemically similar to the current states would bring 
the MS analysis in line with our observed amino acid diversity 
without compromising the high estimated α that is generated. 
Thus, combining these results, we suggest that the Buffering 
model is a possible, but unlikely, explanation behind the 
observed evolution in the D. melanogaster bam gene. This is 
particularly the case as a p-value less than .05 for the empiri-
cal MK test result is the typical criteria used by experimental-
ists to infer a departure from an equilibrium neutral model. 
Thus, with the current assumptions of our models, the arms 
race is the better explanation for the signature of selection 
that we observe at bam. Of note is that a change in function 
that favors diversification of the protein-coding gene would 

Figure 7. Distributions of Miyata score for the Drosophila melanogaster samples from the simulations with best-fit parameters for Base models. The 
boxplots are the distributions of Miyata scores for each model at every 3,125 generations. The distributions are compared with the observed summary 
statistics of D. melanogaster empirical data (red horizontal line).
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give similar results because, like the Arms Race model, selec-
tion to refine a new function would likely favor positive selec-
tion for physicochemically different amino acids. A recent 
analysis of CRISPR/Cas-9 generated nulls in five Drosophila 
species raises this possibility for bam (Bubnell et al., 2022). 
Whether the observed changes in function are associated with 
arms race with Wolbachia remains an open question, as the 
two are not mutually exclusive.

We note that the best-fit results for all models come with 
parameterizations that include a considerable proportion of 
neutral sites. This suggests that our model is missing import-
ant subtleties behind the evolution of bam. For instance, we 
have only used fixed selection coefficients and strict MS cut-
offs throughout our simulations to model the selection coef-
ficients for both beneficial and deleterious mutations, when 
they could be drawn from some distribution. It is also possi-
ble that a mixture of Buffering and Arms Race models may 
be operating, with each driving evolution at a subset of sites.

With regard to resolving the evolutionary interactions between 
bam and Wolbachia in Drosophila, it will now be important 
to explore other experimental evidence with respect to poten-
tial arms race, change in function, or buffering effects due to 
relaxed selective constraints. For example, we can further eval-
uate the potential contributions of an arms race by testing for 
positive selection in Wolbachia genes. In an Arms Race model, 
Wolbachia would coevolve with bam to continue its impact on 
Drosophila fertility. There is already some evidence of positive 
selection across different Wolbachia strains of arthropods and 
nematodes (Baldo et al., 2002, 2010), but a much more thor-
ough analysis of closely related Wolbachia strains infecting D. 
melanogaster and its close relatives is needed.

The applicability of the Buffering model extends beyond 
the bam gene in Drosophila. Other cases of Wolbachia 
interacting with the Drosophila germline include the rescue 
of Sxl hypomorphs (Starr & Cline, 2002) and one mei-P26 
hypomorph (unpublished data). Wolbachia also increases the 
fecundity of D. mauritiana (Fast et al., 2011). These examples 
suggest Wolbachia could function in a “buffering” manner to 
increase the fitness of its host across a variety of situations, 
especially given the high prevalence of Wolbachia across 
different species (Hilgenboecker et al., 2008; Weinert et al., 
2015; Zug & Hammerstein, 2012). The Buffering model may 
also be pertinent to other facultative symbiotic relationships 
wherein one organism acts as a defensive symbiont by pro-
viding protection from a natural enemy for the other species 
(reviewed in Clay, 2014).

Species with smaller population sizes may present better 
opportunities for the detection of positive selection from the 
Buffering model. Drift during the “buffering” phase is what 
allows the buffered deleterious nonsynonymous mutations to 
fix and the time to fixation of neutral mutations is approx-
imately 4N

e generations (Kimura & Ohta, 1969). Thus, a 
smaller Ne will allow for more chances of deleterious muta-
tions fixing and subsequently being under selection to return 
to an ancestral state. The effectiveness of selection is also 
reduced, however, by a smaller Ne. Genes of a greater length 
may also provide more statistical power to detect positive 
selection.

In conclusion, the Buffering model is based on popula-
tion genetic theory where there is episodic variation between 
positive and relaxed selection on a protein-coding gene. Our 
results motivate consideration of buffering-like evolution-
ary processes when population genetic evidence is found for 

departures from selective neutrality consistent with positive 
selection. For example, the framework that could apply to 
populations that experience cycles of higher mutational loads, 
followed by positive selection. This could be observed in tem-
perate species affected by ice ages, where a drop in population 
size allows the fixation of some deleterious alleles that are 
subsequently purged during population expansion after the 
ice age retreats.

The Buffering model sits well alongside previously pro-
posed ideas of conditional neutrality and antagonistic plei-
otropy that offer dynamics of local adaptation resulting from 
a genotype × environment interaction. With conditional neu-
trality, an allele varies between neutral and high fitness across 
two different environments. With antagonistic pleiotropy, two 
alleles reciprocally vary between high and low fitness across 
two different environments. The s model offers an intermedi-
ary scenario, wherein one allele varies between neutral and 
low fitness across two different environments and the other 
varies between neutral and high fitness across two different 
environments. As we have shown that a buffering dynamic 
can produce selectively fixed amino acids, genomic signatures 
and statistical tests that distinguish buffering-driven adap-
tation from other forms of adaptation, including arms race 
dynamics, should be further examined.
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